Skip to contents

The hubVis package contains a function called plot_step_ahead_model_output() that can be used to plot model output that is in the format of forecasts or projects that look multiple horizons into the future.

This function plots forecasts/scenario projections and optional target data. Faceted plots can be created for multiple scenarios, locations, forecast dates, models, etc. Currently, the function can plot only quantile data, with the possibility to add “median” information from the model projections.

For more information about the Hubverse standard format, please refer to the HubDocs website.

The following vignette describes the principal usage of the plot_step_ahead_model_output() function.

Plots are available in two output formats:

  • “interactive” format: a Plotly output object with interactive legend, hover text, zoom-in and zoom-out options, etc.
  • “static” format: a ggplot2 output object. By default, the output plot is “interactive”, but it can be changed to “static” by setting the interactive parameter to FALSE. See end of the document for examples.

Load and Filter Data

To demonstrate the functionality of the plot_step_ahead_model_output() function, we will use the examples data from the hubExamples package.

Scenario

  • scenario_outputs: example scenario projection data that represents model outputs and an ensemble (generated with hubEnsemble) from a scenario hub with predictions for one target (inc hosp) in one location ("US"), one round (“2021-03-07”) and four scenarios.

  • scenario_target_ts: contains time series target data associated with the scenario projection data.

Forecast

  • forecast_outputs: example forecast data that represents model outputs from a forecast hub with predictions for three influenza-related targets (wk inc flu hosp, wk flu hops rate category, and wk flu hosp rate) for two reference dates in 2022.

  • forecast_target_ts: contains time series target data associated with the forecast projection data.

Load data

library(hubExamples)

# Scenario examples
head(scenario_outputs)
#> # A tibble: 6 × 9
#>   model_id        origin_date scenario_id  location target   horizon output_type
#>   <chr>           <date>      <chr>        <chr>    <chr>      <int> <chr>      
#> 1 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 2 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 3 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 4 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 5 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 6 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> # ℹ 2 more variables: output_type_id <dbl>, value <dbl>
head(scenario_target_ts)
#> # A tibble: 6 × 4
#>   location date       observation target  
#>   <chr>    <chr>            <int> <chr>   
#> 1 US       2020-10-03      300678 inc case
#> 2 US       2020-10-10      334493 inc case
#> 3 US       2020-10-17      388282 inc case
#> 4 US       2020-10-24      484422 inc case
#> 5 US       2020-10-31      571389 inc case
#> 6 US       2020-11-07      776479 inc case

# Forecast examples
head(forecast_outputs)
#> # A tibble: 6 × 9
#>   model_id    reference_date target horizon location target_end_date output_type
#>   <chr>       <date>         <chr>    <int> <chr>    <date>          <chr>      
#> 1 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 2 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 3 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 4 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 5 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 6 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> # ℹ 2 more variables: output_type_id <chr>, value <dbl>
head(forecast_target_ts)
#> # A tibble: 6 × 3
#>   date       location observation
#>   <date>     <chr>          <dbl>
#> 1 2020-01-11 01                 0
#> 2 2020-01-11 15                 0
#> 3 2020-01-11 18                 0
#> 4 2020-01-11 27                 0
#> 5 2020-01-11 30                 0
#> 6 2020-01-11 37                 0

Data Preparation

The forecast and scenario output should be a model_out_tbl. In addition to the standard requirements for this class, the plot_step_ahead_model_output() function in hubVis has other requirement.

  • a Date column used for the x-axis of a “step ahead” plot. By default, the function expect a"target_date" column, although this could be over-ridden by specifying a different column using the x_col_name argument.
  • quantile and median are the only accepted output type
# Add a `target_date` column in the scenario example
projection_data <- dplyr::mutate(scenario_outputs,
                                 target_date = as.Date(origin_date) +
                                   (horizon * 7) - 1)
head(projection_data)
#> # A tibble: 6 × 10
#>   model_id        origin_date scenario_id  location target   horizon output_type
#>   <chr>           <date>      <chr>        <chr>    <chr>      <int> <chr>      
#> 1 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 2 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 3 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 4 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 5 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> 6 HUBuni-simexamp 2021-03-07  A-2021-03-05 US       inc case       1 quantile   
#> # ℹ 3 more variables: output_type_id <dbl>, value <dbl>, target_date <date>
# Filter only `quantile` output type in the forecast example
forecast_quantile <- dplyr::filter(forecast_outputs, output_type == "quantile")
head(forecast_quantile)
#> # A tibble: 6 × 9
#>   model_id    reference_date target horizon location target_end_date output_type
#>   <chr>       <date>         <chr>    <int> <chr>    <date>          <chr>      
#> 1 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 2 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 3 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 4 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 5 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> 6 Flusight-b… 2022-11-19     wk in…       0 25       2022-11-19      quantile   
#> # ℹ 2 more variables: output_type_id <chr>, value <dbl>

Plot

The plotting function requires only 2 parameters:

  • model_out_tbl: a model_out_tbl object containing all the Hubverse standard columns, including "target_date" and "model_id" columns. As all model_output in model_out_tbl will be plotted, any filtering needs to happen outside this function.

  • target_data: a data.frame object containing the target data, including the columns: "date" and "observation".

“Simple” plot

The projection_data and target_data contain information for multiple locations, and scenarios.

Scenario

To plot the model projections for the US, Scenario A:

# Pre-filtering
projection_data_a_us <- dplyr::filter(projection_data,
                                      scenario_id == "A-2021-03-05",
                                      location == "US")

# Limit date for layout reason
target_data_us <-
  dplyr::filter(scenario_target_ts, location == "US",
                date < min(projection_data$target_date) + 21,
                date > "2020-10-01")
plot_step_ahead_model_output(projection_data_a_us, target_data_us)

By default, the 50%, 80% and 95% intervals are plotted, with a specific color palette per model_id.

In general, it is hard to see multiple intervals when multiple models are plotted, so specifying only one interval can be useful:

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             intervals = 0.8)

It is also possible to add a median line on the plot with the use_median_as_point parameter:

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             intervals = 0.8,
                             use_median_as_point = TRUE)

By default plots are interactive, but that can be easily switched to static:

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             intervals = 0.8,
                             use_median_as_point = TRUE,
                             interactive = FALSE)

Forecast

To plot the forecast projections for one reference dates (2022-11-19) for Massachusetts (25).

# Pre-filtering
forecast_quantile <- dplyr::mutate(forecast_quantile,
                                   output_type_id = as.numeric(output_type_id))
forecast_quantile_1 <- dplyr::filter(forecast_quantile,
                                     reference_date == "2022-11-19",
                                     location == 25)

# Limit date for layout reason
forecast_target_ma <- dplyr::filter(forecast_target_ts, location == 25,
                                    date >= "2022-11-01",
                                    date <= "2023-01-01")

As the forecast projections used the column target_end_date and contains the quantiles: "0.05", "0.1", "0.25", "0.5", "0.75", "0.9", "0.95", the parameters in the plot_step_ahead_model_output() need to be ajusted:

plot_step_ahead_model_output(forecast_quantile_1, forecast_target_ma,
                             intervals = c(0.9, 0.5),
                             use_median_as_point = TRUE,
                             x_col_name = "target_end_date")

Facet plot

Scenario

A “facet” (or subplot) plot can also be created for each scenario

# Pre-filtering
projection_data_us <- dplyr::filter(projection_data,
                                    location == "US")
plot_step_ahead_model_output(projection_data_us, target_data_us,
                             facet = "scenario_id")

The layout of the “facets” can be adjusted, with the different facet_ parameters.

plot_step_ahead_model_output(projection_data_us, target_data_us,
                             use_median_as_point = TRUE,
                             facet = "scenario_id", facet_scales = "free_x",
                             facet_nrow = 2, facet_title = "bottom left")

Or with the additional facet_ncol parameter for the statics plot

plot_step_ahead_model_output(projection_data_us, target_data_us,
                             use_median_as_point = TRUE, interactive = FALSE,
                             facet = "scenario_id", facet_scales = "free_x",
                             facet_ncol = 4, facet_title = "bottom left")

A “facet” (or subplot) plot can also be created for each model. In this case, the legend will be adapted to return the model_id value.

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             facet = "model_id")

The legend can be removed with the parameter show_legend = FALSE.

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             facet = "model_id", show_legend = FALSE)

Forecast

A “facet” (or subplot) plot can also be created for each location

forecast_quantile_1 <- dplyr::filter(forecast_quantile,
                                     reference_date == "2022-11-19")
forecast_target <- dplyr::filter(forecast_target_ts, date >= "2022-11-01",
                                 date <= "2023-01-01",
                                 location %in% forecast_quantile_1$location)
plot_step_ahead_model_output(forecast_quantile_1, forecast_target,
                             intervals = c(0.9, 0.5),
                             use_median_as_point = TRUE,
                             x_col_name = "target_end_date",
                             facet = "location")

Intervals

By default, the 50%, 80% and 95% intervals are plotted. However, it is possible to also plot the 90% intervals or a subset of these intervals. When plotting 6 or more models, the plot will be reduced to show the widest intervals provided (95% by default).

To illustrate this we will use the projections for only one model in the scenario example

# Pre-filtering
projection_data_mod <- dplyr::filter(projection_data,
                                     location == "US",
                                     model_id == "hub-ensemble")
plot_step_ahead_model_output(projection_data_mod, target_data_us,
                             use_median_as_point = TRUE, facet = "scenario_id",
                             facet_nrow = 2, intervals = c(0.5, 0.8, 0.9, 0.95))

The opacity of the intervals can be adjusted:

plot_step_ahead_model_output(projection_data_mod, target_data_us,
                             use_median_as_point = TRUE, facet = "scenario_id",
                             facet_nrow = 2, intervals = c(0.5, 0.8, 0.9, 0.95),
                             fill_transparency = 0.15)

Plots without intervals are also possible:

plot_step_ahead_model_output(projection_data_mod, target_data_us,
                             use_median_as_point = TRUE, facet = "scenario_id",
                             facet_nrow = 2, intervals = NULL)

Other parameters

Several other parameters are available to update the plot output. Here is some examples of some parameters.

“Ensemble” layout

It is possible to assign a specific color and behavior to a specific model_id. Typically, this is done to highlight an ensemble, so the name for these arguments are ens_name and end_color. The model specified by ens_name will be the top layer of the resulting plot.


plot_step_ahead_model_output(projection_data_us, target_data_us,
                             use_median_as_point = TRUE,
                             facet = "scenario_id", facet_nrow = 2,
                             ens_name = "hub-ensemble", ens_color = "black",
                             intervals = 0.8)

“Group” layout

An optional parameter group in the plot_step_ahead_model_output() function to allow to group or partition the input data in the plot according to a specific column. Please refer to ggplot2::aes_group_order for more information.

To illustrate this we will use the forecast example for both reference date:

plot_step_ahead_model_output(forecast_quantile, forecast_target,
                             intervals = c(0.9, 0.5),
                             use_median_as_point = TRUE,
                             x_col_name = "target_end_date",
                             facet = "location",
                             group = "reference_date")

Layout update

Multiple layout update are possible:

  • Not showing the target data in the plot:
plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             plot_target = FALSE)
  • Change the top layer to the target data:
plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             top_layer = "target")
  • Add a title to the plot:
plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             title = "Incident Cases in the US")
  • Change palette color and behavior:
    • The default palette can be changed. All the available palette names are available here:
RColorBrewer::display.brewer.all()

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             pal_color = "Dark2")
  • By default, separate colors will be used for each model.

The fill_by parameter can be change to another valid column names to change the legend and colors attributes to this new column.

plot_step_ahead_model_output(projection_data_us, target_data_us,
                             facet = "model_id", fill_by = "scenario_id")

It is possible to use only blues for all models, by setting the pal_color parameter to NULL. This might be especially useful when used for many models in conjunction with highlighting the ensemble forecast using the ens_name and ens_color argument.

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             intervals = 0.8,
                             ens_name = "hub-ensemble", ens_color = "black",
                             pal_color = NULL, use_median_as_point = TRUE)

The default blue color can be changed with the one_color parameter

plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             intervals = 0.8, one_color = "orange",
                             ens_name = "hub-ensemble", ens_color = "black",
                             pal_color = NULL, use_median_as_point = TRUE)
  • Interactive/Static plot:
plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             interactive = FALSE)

  • Column Names:

The input data frames can have different column names for the date information. In this case, the two x_col_name and x_target_col_name parameters can be used to indicate the variables that should be mapped to the x-axis.

names(target_data_us)[names(target_data_us) == "date"] <- "time"
names(projection_data_a_us)[names(projection_data_a_us) == "target_date"] <-
  "date"
plot_step_ahead_model_output(projection_data_a_us, target_data_us,
                             x_col_name = "date", x_target_col_name = "time")

For other parameters, please consult the documentation associated with the function: ?plot_step_ahead_model_output