Skip to contents

An important function of hubUtils is allowing for the connection to data in the model-output directory to facilitate extraction, filtering, querying, exploring, and analyzing of Hub data.

Structure of hubverse datasets

All data returned from connecting to and querying hubs can be read or validated as a model_out_tbl which is an S3 class defined by the hubUtils package. A model_out_tbl is a long-form tibble designed to conform to the hubverse data specifications for model output data. In short, the columns of a valid model_out_tbl containing model output data from a hub are:

  • model_id: this is the unique character identifier of a model.
  • output_type: a character variable that defines the type of representation of model output that is in a given row.
  • output_type_id: a variable that specifies some additional identifying information specific to the output type in a given row, e.g., a numeric quantile level, a string giving the name of a possible category for a discrete outcome, or an index of a sample.
  • value: a numeric variable that provides the information about the model’s prediction.
  • ... : other columns will be present depending on modeling tasks defined by the individual modeling hub. These columns are referred to in hubverse terminology as the task-ID variables.

Other hubverse tools, designed for data validation, ensemble building, visualization, etc…, all are designed with the “promises” implicit in the data format specified by model_out_tbl. For example, the hubEnsembles::linear_pool() function both accepts as input and returns as output model_out_tbl objects.

Hub connections

There are two functions for connecting to model-output data:

  • connect_hub() is used for connecting to fully configured hubs (i.e. which contain valid admin.json and tasks.json in a hub-config directory). This function uses configurations defined in config files in the hub-config/ directory and allows for connecting to hubs with files in multiple file formats (allowable formats specified by the file_format property of admin.json).
  • connect_model_output() allows for connecting directly to the contents of a model-output directory and is useful for connecting to appropriately organised files in an informal hub (i.e. which has not been fully configured with appropriate hub-config/ files.)

Both functions establish connections through the arrow package, specifically by opening datasets as FileSystemDatasets, one for each file format.

Where multiple file formats are accepted in a single Hub, file format specific FileSystemDatasets are combined into a single UnionDataset for single point access to the entire Hub model-output dataset. This only applies to connect_hub() in fully configured Hubs, where config files can be used to determine a unifying schema across all file formats.

In contract, connect_model_output() can only be used to open single file format datasets of the format defined explicitly through the file_format argument.

library(hubUtils)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

Connecting to a configured hub

hub_path <- system.file("testhubs/flusight", package = "hubUtils")
hub_con <- connect_hub(hub_path)
hub_con
#> 
#> ── <hub_connection/UnionDataset> ──
#> 
#>  hub_name: "US CDC FluSight"
#>  hub_path: /home/runner/work/_temp/Library/hubUtils/testhubs/flusight
#>  file_format: "csv(5/5)", "parquet(2/2)", and "arrow(1/1)"
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/flusight/forecasts"
#>  config_admin: hub-config/admin.json
#>  config_tasks: hub-config/tasks.json
#> 
#> ── Connection schema
#> hub_connection
#> forecast_date: date32[day]
#> horizon: int32
#> target: string
#> location: string
#> output_type: string
#> output_type_id: string
#> value: double
#> model_id: string

To access data from a hub connection you can use dplyr verbs and construct querying pipelines.

hub_con %>%
  filter(output_type == "quantile", location == "US") %>%
  collect()
#> # A tibble: 276 × 8
#>    forecast_date horizon target        location output_type output_type_id value
#>    <date>          <int> <chr>         <chr>    <chr>       <chr>          <dbl>
#>  1 2023-04-24          1 wk ahead inc… US       quantile    0.01               0
#>  2 2023-04-24          1 wk ahead inc… US       quantile    0.025              0
#>  3 2023-04-24          1 wk ahead inc… US       quantile    0.05               0
#>  4 2023-04-24          1 wk ahead inc… US       quantile    0.1              281
#>  5 2023-04-24          1 wk ahead inc… US       quantile    0.15             600
#>  6 2023-04-24          1 wk ahead inc… US       quantile    0.2              717
#>  7 2023-04-24          1 wk ahead inc… US       quantile    0.25             817
#>  8 2023-04-24          1 wk ahead inc… US       quantile    0.3              877
#>  9 2023-04-24          1 wk ahead inc… US       quantile    0.35             913
#> 10 2023-04-24          1 wk ahead inc… US       quantile    0.4              965
#> # ℹ 266 more rows
#> # ℹ 1 more variable: model_id <chr>

Note however that not all dplyr filtering options are available for all data types yet.

You can see how in the above output the required model_id, output_type, output_type_id and value column names are all present, as is required for a model_out_tbl object. However, the output of the above expression, while conforming to model_out_tbl convention, is actually returned just as a tbl_df or tibble object.

For example, if you wanted to get all quantile predictions for the last forecast date in the hub, you might try:

hub_con %>%
  filter(output_type == "quantile", location == "US") %>%
  filter(forecast_date == max(forecast_date)) %>%
  collect()
#> Error: Filter expression not supported for Arrow Datasets: forecast_date == max(forecast_date)
#> Call collect() first to pull data into R.

This doesn’t work however as arrow does not have an equivalent max method for Date[32] data types.

In such a situation, you could collect after applying the first filtering level which does work for arrow and then finish the filtering on the in-memory data returned by collect.

hub_con %>%
  filter(output_type == "quantile", location == "US") %>%
  collect() %>%
  filter(forecast_date == max(forecast_date))
#> # A tibble: 92 × 8
#>    forecast_date horizon target        location output_type output_type_id value
#>    <date>          <int> <chr>         <chr>    <chr>       <chr>          <dbl>
#>  1 2023-05-08          1 wk ahead inc… US       quantile    0.01               0
#>  2 2023-05-08          1 wk ahead inc… US       quantile    0.025              0
#>  3 2023-05-08          1 wk ahead inc… US       quantile    0.05               0
#>  4 2023-05-08          1 wk ahead inc… US       quantile    0.1              231
#>  5 2023-05-08          1 wk ahead inc… US       quantile    0.15             517
#>  6 2023-05-08          1 wk ahead inc… US       quantile    0.2              637
#>  7 2023-05-08          1 wk ahead inc… US       quantile    0.25             741
#>  8 2023-05-08          1 wk ahead inc… US       quantile    0.3              796
#>  9 2023-05-08          1 wk ahead inc… US       quantile    0.35             847
#> 10 2023-05-08          1 wk ahead inc… US       quantile    0.4              876
#> # ℹ 82 more rows
#> # ℹ 1 more variable: model_id <chr>

Alternatively, depending on the size of the data, in might be quicker to filter the data in two steps:

  1. get the last forecast date available for the filtered subset.
  2. use the last forecast date in the filtering query.
last_forecast <- hub_con %>%
  filter(output_type == "quantile", location == "US") %>%
  pull(forecast_date, as_vector = TRUE) %>%
  max()


hub_con %>%
  filter(
    output_type == "quantile", location == "US",
    forecast_date == last_forecast
  ) %>%
  collect()
#> # A tibble: 92 × 8
#>    forecast_date horizon target        location output_type output_type_id value
#>    <date>          <int> <chr>         <chr>    <chr>       <chr>          <dbl>
#>  1 2023-05-08          1 wk ahead inc… US       quantile    0.01               0
#>  2 2023-05-08          1 wk ahead inc… US       quantile    0.025              0
#>  3 2023-05-08          1 wk ahead inc… US       quantile    0.05               0
#>  4 2023-05-08          1 wk ahead inc… US       quantile    0.1              231
#>  5 2023-05-08          1 wk ahead inc… US       quantile    0.15             517
#>  6 2023-05-08          1 wk ahead inc… US       quantile    0.2              637
#>  7 2023-05-08          1 wk ahead inc… US       quantile    0.25             741
#>  8 2023-05-08          1 wk ahead inc… US       quantile    0.3              796
#>  9 2023-05-08          1 wk ahead inc… US       quantile    0.35             847
#> 10 2023-05-08          1 wk ahead inc… US       quantile    0.4              876
#> # ℹ 82 more rows
#> # ℹ 1 more variable: model_id <chr>

Connecting to a model output directory

There is also an option to connect directly to a model output directory without using any metadata in a hub config file. This can be useful when a hub has not been fully configured yet.

The approach does have certain limitations though. For example, an overall unifying schema cannot be determined from the config files so the ability of open_dataset() to connect and parse data correctly cannot be guaranteed across files.

In addition, only a single file_format dataset can be opened.

model_output_dir <- system.file("testhubs/simple/model-output", package = "hubUtils")
mod_out_con <- connect_model_output(model_output_dir, file_format = "csv")
mod_out_con
#> 
#> ── <mod_out_connection/FileSystemDataset> ──
#> 
#>  file_format: "csv(3/3)"
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/simple/model-output"
#> 
#> ── Connection schema
#> mod_out_connection with 3 csv files
#> origin_date: date32[day]
#> target: string
#> horizon: int64
#> location: string
#> output_type: string
#> output_type_id: double
#> value: int64
#> model_id: string
mod_out_con %>%
  filter(output_type == "quantile", location == "US") %>%
  collect()
#> # A tibble: 138 × 8
#>    origin_date target horizon location output_type output_type_id value model_id
#>    <date>      <chr>    <int> <chr>    <chr>                <dbl> <int> <chr>   
#>  1 2022-10-08  wk in…       1 US       quantile             0.01    135 team1-g…
#>  2 2022-10-08  wk in…       1 US       quantile             0.025   137 team1-g…
#>  3 2022-10-08  wk in…       1 US       quantile             0.05    139 team1-g…
#>  4 2022-10-08  wk in…       1 US       quantile             0.1     140 team1-g…
#>  5 2022-10-08  wk in…       1 US       quantile             0.15    141 team1-g…
#>  6 2022-10-08  wk in…       1 US       quantile             0.2     141 team1-g…
#>  7 2022-10-08  wk in…       1 US       quantile             0.25    142 team1-g…
#>  8 2022-10-08  wk in…       1 US       quantile             0.3     143 team1-g…
#>  9 2022-10-08  wk in…       1 US       quantile             0.35    144 team1-g…
#> 10 2022-10-08  wk in…       1 US       quantile             0.4     145 team1-g…
#> # ℹ 128 more rows

When connecting to a model output directly, you can also specify a schema to override the default arrow schema auto-detection. This can help at times to resolve conflicts in data types across different dataset files.

library(arrow)
#> 
#> Attaching package: 'arrow'
#> The following object is masked from 'package:utils':
#> 
#>     timestamp

model_output_schema <- schema(
  origin_date = date32(),
  target = string(),
  horizon = int32(),
  location = string(),
  output_type = string(),
  output_type_id = string(),
  value = int32(),
  model_id = string()
)

mod_out_con <- connect_model_output(model_output_dir,
  file_format = "csv",
  schema = model_output_schema
)
mod_out_con
#> 
#> ── <mod_out_connection/FileSystemDataset> ──
#> 
#>  file_format: "csv(3/3)"
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/simple/model-output"
#> 
#> ── Connection schema
#> mod_out_connection with 3 csv files
#> origin_date: date32[day]
#> target: string
#> horizon: int32
#> location: string
#> output_type: string
#> output_type_id: string
#> value: int32
#> model_id: string

Using a schema can however also produce new errors which can sometimes be hard to debug. For example, here we are defining a schema with field output_type cast as int32 data type. As column output_type actually contain character type data which cannot be coerced to integer, connecting to the model output directory produces an arrow error.

model_output_schema <- schema(
  origin_date = date32(),
  target = string(),
  horizon = int32(),
  location = string(),
  output_type = int32(),
  output_type_id = string(),
  value = int32(),
  model_id = string()
)

mod_out_con <- connect_model_output(model_output_dir,
  file_format = "csv",
  schema = model_output_schema
)
#> Error in `arrow::open_dataset()`:
#> ! Invalid: No non-null segments were available for field 'model_id'; couldn't infer type

Beware that arrow errors can be somewhat misleading at times so if you do get such a non-informative error, a good place to start would be to check your schema matches the columns and your data can be coerced to the data types specified in the schema.