Skip to contents

[Experimental] Open the time-series target data file(s) in a hub as an arrow dataset.

Usage

connect_target_timeseries(
  hub_path = ".",
  date_col = NULL,
  na = c("NA", ""),
  ignore_files = NULL
)

Arguments

hub_path

Either a character string path to a local Modeling Hub directory or an object of class <SubTreeFileSystem> created using functions s3_bucket() or gs_bucket() by providing a string S3 or GCS bucket name or path to a Modeling Hub directory stored in the cloud. For more details consult the Using cloud storage (S3, GCS) in the arrow package. The hub must be fully configured with valid admin.json and tasks.json files within the hub-config directory.

date_col

Optional column name to be interpreted as date. Default is NULL. Useful when the required date column is a partitioning column in the target data and does not have the same name as a date typed task ID variable in the config.

na

A character vector of strings to interpret as missing values. Only applies to CSV files. The default is c("NA", ""). Useful when actual character string "NA" values are used in the data. In such a case, use empty cells to indicate missing values in your files and set na = "".

ignore_files

A character vector of file names (not paths) or file prefixes to ignore when discovering model output files to include in dataset connections. Parent directory names should not be included. Common non-data files such as "README" and ".DS_Store" are ignored automatically, but additional files can be excluded by specifying them here.

Value

An arrow dataset object of subclass <target_timeseries>.

Details

If the target data is split across multiple files in a time-series directory, all files must share the same file format, either csv or parquet. No other types of files are currently allowed in a time-series directory.

Schema Creation

This function uses different methods to create the Arrow schema depending on the hub configuration version:

v6+ hubs (with target-data.json): Schema is created directly from the target-data.json configuration file using create_timeseries_schema(). This config-based approach is fast and deterministic, requiring no filesystem I/O to scan data files. It's especially beneficial for cloud storage where file scanning can be slow.

Hubs (without target-data.json): Schema is inferred by scanning the actual data files. This inference-based approach examines file structure and content to determine column types.

The function automatically detects which method to use based on the presence of target-data.json in the hub configuration.

Schema Ordering

Column ordering in the resulting dataset depends on configuration version and file format:

v6+ hubs (with target-data.json):

  • Parquet: Columns are reordered to the standard hubverse convention (see get_target_data_colnames()). Parquet's column-by-name matching enables safe reordering.

  • CSV: Original file ordering is preserved to avoid column name/position mismatches during collection.

Hubs (without target-data.json): Original file ordering is preserved regardless of format.

Examples

# Column Ordering: CSV vs Parquet in v6+ hubs
# For v6+ hubs with target-data.json, ordering differs by file format

# Example 1: CSV format (single file) - preserves original file ordering
hub_path_csv <- system.file("testhubs/v6/target_file", package = "hubUtils")
ts_con_csv <- connect_target_timeseries(hub_path_csv)

# CSV columns are in their original file order
names(ts_con_csv)
#> [1] "target_end_date" "target"          "location"        "observation"    
# Note: columns appear in the order they are in the CSV file

# Collect and filter as usual
ts_con_csv |> dplyr::collect()
#> # A tibble: 66 × 4
#>    target_end_date target          location observation
#>    <date>          <chr>           <chr>          <dbl>
#>  1 2022-10-22      wk inc flu hosp 02                 3
#>  2 2022-10-22      wk inc flu hosp 01               141
#>  3 2022-10-22      wk inc flu hosp US              2380
#>  4 2022-10-29      wk inc flu hosp 02                14
#>  5 2022-10-29      wk inc flu hosp 01               262
#>  6 2022-10-29      wk inc flu hosp US              4353
#>  7 2022-11-05      wk inc flu hosp 02                10
#>  8 2022-11-05      wk inc flu hosp 01               360
#>  9 2022-11-05      wk inc flu hosp US              6571
#> 10 2022-11-12      wk inc flu hosp 02                20
#> # ℹ 56 more rows
ts_con_csv |>
  dplyr::filter(location == "US") |>
  dplyr::collect()
#> # A tibble: 22 × 4
#>    target_end_date target          location observation
#>    <date>          <chr>           <chr>          <dbl>
#>  1 2022-10-22      wk inc flu hosp US              2380
#>  2 2022-10-29      wk inc flu hosp US              4353
#>  3 2022-11-05      wk inc flu hosp US              6571
#>  4 2022-11-12      wk inc flu hosp US              8848
#>  5 2022-11-19      wk inc flu hosp US             11427
#>  6 2022-11-26      wk inc flu hosp US             19846
#>  7 2022-12-03      wk inc flu hosp US             26333
#>  8 2022-12-10      wk inc flu hosp US             23851
#>  9 2022-12-17      wk inc flu hosp US             21435
#> 10 2022-12-24      wk inc flu hosp US             19286
#> # ℹ 12 more rows

# Example 2: Parquet format (directory) - reordered to hubverse convention
hub_path_parquet <- system.file("testhubs/v6/target_dir", package = "hubUtils")
ts_con_parquet <- connect_target_timeseries(hub_path_parquet)

# Parquet columns follow hubverse convention
names(ts_con_parquet)
#> [1] "target_end_date" "target"          "location"        "observation"    

# Reordering is safe for Parquet because it matches columns by name
# rather than position during collection
ts_con_parquet |> dplyr::collect()
#> # A tibble: 66 × 4
#>    target_end_date target           location observation
#>    <date>          <chr>            <chr>          <dbl>
#>  1 2022-10-22      wk flu hosp rate 02             0.422
#>  2 2022-10-22      wk flu hosp rate 01             2.78 
#>  3 2022-10-22      wk flu hosp rate US             0.716
#>  4 2022-10-29      wk flu hosp rate 02             1.97 
#>  5 2022-10-29      wk flu hosp rate 01             5.17 
#>  6 2022-10-29      wk flu hosp rate US             1.31 
#>  7 2022-11-05      wk flu hosp rate 02             1.41 
#>  8 2022-11-05      wk flu hosp rate 01             7.11 
#>  9 2022-11-05      wk flu hosp rate US             1.98 
#> 10 2022-11-12      wk flu hosp rate 02             2.81 
#> # ℹ 56 more rows

# Both formats support the same filtering operations
ts_con_parquet |>
  dplyr::filter(target_end_date ==  "2022-12-31") |>
  dplyr::collect()
#> # A tibble: 6 × 4
#>   target_end_date target           location observation
#>   <date>          <chr>            <chr>          <dbl>
#> 1 2022-12-31      wk flu hosp rate 02              6.18
#> 2 2022-12-31      wk flu hosp rate 01              2.76
#> 3 2022-12-31      wk flu hosp rate US              5.83
#> 4 2022-12-31      wk inc flu hosp  02             44   
#> 5 2022-12-31      wk inc flu hosp  01            140   
#> 6 2022-12-31      wk inc flu hosp  US          19369   

if (FALSE) { # \dontrun{
# Access Target time-series data from a cloud hub
s3_hub_path <- s3_bucket("example-complex-forecast-hub")
s3_con <- connect_target_timeseries(s3_hub_path)
s3_con
s3_con |> dplyr::collect()
} # }