Skip to contents

Connect to data in a model output directory through a Modeling Hub or directly. Data can be stored in a local directory or in the cloud on AWS or GCS.

Usage

connect_hub(
  hub_path,
  file_format = c("csv", "parquet", "arrow"),
  output_type_id_datatype = c("from_config", "auto", "character", "double", "integer",
    "logical", "Date"),
  partitions = list(model_id = arrow::utf8()),
  skip_checks = FALSE
)

connect_model_output(
  model_output_dir,
  file_format = c("csv", "parquet", "arrow"),
  partition_names = "model_id",
  schema = NULL,
  skip_checks = FALSE
)

Arguments

hub_path

Either a character string path to a local Modeling Hub directory or an object of class <SubTreeFileSystem> created using functions s3_bucket() or gs_bucket() by providing a string S3 or GCS bucket name or path to a Modeling Hub directory stored in the cloud. For more details consult the Using cloud storage (S3, GCS) in the arrow package. The hub must be fully configured with valid admin.json and tasks.json files within the hub-config directory.

file_format

The file format model output files are stored in. For connection to a fully configured hub, accessed through hub_path, file_format is inferred from the hub's file_format configuration in admin.json and is ignored by default. If supplied, it will override hub configuration setting. Multiple formats can be supplied to connect_hub but only a single file format can be supplied to connect_mod_out.

output_type_id_datatype

character string. One of "from_config", "auto", "character", "double", "integer", "logical", "Date". Defaults to "from_config" which uses the setting in the output_type_id_datatype property in the tasks.json config file if available. If the property is not set in the config, the argument falls back to "auto" which determines the output_type_id data type automatically from the tasks.json config file as the simplest data type required to represent all output type ID values across all output types in the hub. When only point estimate output types (where output_type_ids are NA,) are being collected by a hub, the output_type_id column is assigned a character data type when auto-determined. Other data type values can be used to override automatic determination. Note that attempting to coerce output_type_id to a data type that is not valid for the data (e.g. trying to coerce"character" values to "double") will likely result in an error or potentially unexpected behaviour so use with care.

partitions

a named list specifying the arrow data types of any partitioning column.

skip_checks

Logical. If FALSE (default), check file_format parameter against the hub's model output files. Also excludes invalid model output files when opening hub datasets. Setting to TRUE will improve performance but will result in an error if the model output directory includes invalid files. Cannot be TRUE when there are multiple file formats in the hub's model output directory or when the hub's model output directory contains files that are not model output data (for example, a README).

model_output_dir

Either a character string path to a local directory containing model output data or an object of class <SubTreeFileSystem> created using functions s3_bucket() or gs_bucket() by providing a string S3 or GCS bucket name or path to a directory containing model output data stored in the cloud. For more details consult the Using cloud storage (S3, GCS) in the arrow package.

partition_names

character vector that defines the field names to which recursive directory names correspond to. Defaults to a single model_id field which reflects the standard expected structure of a model-output directory.

schema

An arrow::Schema object for the Dataset. If NULL (the default), the schema will be inferred from the data sources.

Value

  • connect_hub returns an S3 object of class <hub_connection>.

  • connect_mod_out returns an S3 object of class <mod_out_connection>.

Both objects are connected to the data in the model-output directory via an Apache arrow FileSystemDataset connection. The connection can be used to extract data using dplyr custom queries. The <hub_connection> class also contains modeling hub metadata.

Functions

  • connect_hub(): connect to a fully configured Modeling Hub directory.

  • connect_model_output(): connect directly to a model-output directory. This function can be used to access data directly from an appropriately set up model output directory which is not part of a fully configured hub.

Examples

# Connect to a local simple forecasting Hub.
hub_path <- system.file("testhubs/simple", package = "hubUtils")
hub_con <- connect_hub(hub_path)
hub_con
#> 
#> ── <hub_connection/UnionDataset> ──
#> 
#>  hub_name: "Simple Forecast Hub"
#>  hub_path: /home/runner/work/_temp/Library/hubUtils/testhubs/simple
#>  file_format: "csv(3/3)" and "parquet(1/1)"
#>  checks: TRUE
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/simple/model-output"
#>  config_admin: hub-config/admin.json
#>  config_tasks: hub-config/tasks.json
#> 
#> ── Connection schema 
#> hub_connection
#> 9 columns
#> origin_date: date32[day]
#> target: string
#> horizon: int32
#> location: string
#> output_type: string
#> output_type_id: double
#> value: int32
#> model_id: string
#> age_group: string
hub_con <- connect_hub(hub_path, output_type_id_datatype = "character")
hub_con
#> 
#> ── <hub_connection/UnionDataset> ──
#> 
#>  hub_name: "Simple Forecast Hub"
#>  hub_path: /home/runner/work/_temp/Library/hubUtils/testhubs/simple
#>  file_format: "csv(3/3)" and "parquet(1/1)"
#>  checks: TRUE
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/simple/model-output"
#>  config_admin: hub-config/admin.json
#>  config_tasks: hub-config/tasks.json
#> 
#> ── Connection schema 
#> hub_connection
#> 9 columns
#> origin_date: date32[day]
#> target: string
#> horizon: int32
#> location: string
#> output_type: string
#> output_type_id: string
#> value: int32
#> model_id: string
#> age_group: string
# Connect directly to a local `model-output` directory
mod_out_path <- system.file("testhubs/simple/model-output", package = "hubUtils")
mod_out_con <- connect_model_output(mod_out_path)
mod_out_con
#> 
#> ── <mod_out_connection/FileSystemDataset> ──
#> 
#>  file_format: "csv(3/3)"
#>  checks: TRUE
#>  file_system: "LocalFileSystem"
#>  model_output_dir:
#>   "/home/runner/work/_temp/Library/hubUtils/testhubs/simple/model-output"
#> 
#> ── Connection schema 
#> mod_out_connection with 3 csv files
#> 8 columns
#> origin_date: date32[day]
#> target: string
#> horizon: int64
#> location: string
#> output_type: string
#> output_type_id: double
#> value: int64
#> model_id: string
# Query hub_connection for data
library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
hub_con %>%
  filter(
    origin_date == "2022-10-08",
    horizon == 2
  ) %>%
  collect_hub()
#> # A tibble: 69 × 9
#>    model_id     origin_date target        horizon location age_group output_type
#>  * <chr>        <date>      <chr>           <int> <chr>    <chr>     <chr>      
#>  1 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  2 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  3 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  4 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  5 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  6 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  7 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  8 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#>  9 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#> 10 hub-baseline 2022-10-08  wk inc flu h…       2 US       NA        quantile   
#> # ℹ 59 more rows
#> # ℹ 2 more variables: output_type_id <chr>, value <int>
mod_out_con %>%
  filter(
    origin_date == "2022-10-08",
    horizon == 2
  ) %>%
  collect_hub()
#> # A tibble: 69 × 8
#>    model_id origin_date target horizon location output_type output_type_id value
#>  * <chr>    <date>      <chr>    <int> <chr>    <chr>                <dbl> <int>
#>  1 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.01    135
#>  2 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.025   137
#>  3 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.05    139
#>  4 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.1     140
#>  5 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.15    141
#>  6 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.2     141
#>  7 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.25    142
#>  8 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.3     143
#>  9 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.35    144
#> 10 hub-bas… 2022-10-08  wk in…       2 US       quantile             0.4     145
#> # ℹ 59 more rows
# Connect to a simple forecasting Hub stored in an AWS S3 bucket.
if (FALSE) { # \dontrun{
hub_path <- s3_bucket("hubverse/hubutils/testhubs/simple/")
hub_con <- connect_hub(hub_path)
hub_con
} # }