Skip to contents

[Experimental] Open the time-series target data file(s) in a hub as an arrow dataset.

Usage

connect_target_timeseries(hub_path = ".", date_col = NULL, na = c("NA", ""))

Arguments

hub_path

Either a character string path to a local Modeling Hub directory or an object of class <SubTreeFileSystem> created using functions s3_bucket() or gs_bucket() by providing a string S3 or GCS bucket name or path to a Modeling Hub directory stored in the cloud. For more details consult the Using cloud storage (S3, GCS) in the arrow package. The hub must be fully configured with valid admin.json and tasks.json files within the hub-config directory.

date_col

Optional column name to be interpreted as date. Default is NULL. Useful when the required date column is a partitioning column in the target data and does not have the same name as a date typed task ID variable in the config.

na

A character vector of strings to interpret as missing values. Only applies to CSV files. The default is c("NA", ""). Useful when actual character string "NA" values are used in the data. In such a case, use empty cells to indicate missing values in your files and set na = "".

Value

An arrow dataset object of subclass <target_timeseries>.

Details

If the target data is split across multiple files in a time-series directory, all files must share the same file format, either csv or parquet. No other types of files are currently allowed in a time-series directory.

Examples

# Clone example hub
tmp_hub_path <- withr::local_tempdir()
example_hub <- "https://github.com/hubverse-org/example-complex-forecast-hub.git"
gert::git_clone(url = example_hub, path = tmp_hub_path)
# Connect to time-series data
ts_con <- connect_target_timeseries(tmp_hub_path)
ts_con
#> target_timeseries with 1 csv file
#> 4 columns
#> date: date32[day]
#> target: string
#> location: string
#> observation: double
# Collect all time-series data
ts_con |> dplyr::collect()
#> # A tibble: 20,510 × 4
#>    date       target          location observation
#>    <date>     <chr>           <chr>          <dbl>
#>  1 2020-01-11 wk inc flu hosp 01                 0
#>  2 2020-01-11 wk inc flu hosp 15                 0
#>  3 2020-01-11 wk inc flu hosp 18                 0
#>  4 2020-01-11 wk inc flu hosp 27                 0
#>  5 2020-01-11 wk inc flu hosp 30                 0
#>  6 2020-01-11 wk inc flu hosp 37                 0
#>  7 2020-01-11 wk inc flu hosp 48                 0
#>  8 2020-01-11 wk inc flu hosp US                 1
#>  9 2020-01-18 wk inc flu hosp 01                 0
#> 10 2020-01-18 wk inc flu hosp 15                 0
#> # ℹ 20,500 more rows
# Filter for a specific date before collecting
ts_con |>
  dplyr::filter(date == "2020-01-11") |>
  dplyr::collect()
#> # A tibble: 16 × 4
#>    date       target           location observation
#>    <date>     <chr>            <chr>          <dbl>
#>  1 2020-01-11 wk inc flu hosp  01          0       
#>  2 2020-01-11 wk inc flu hosp  15          0       
#>  3 2020-01-11 wk inc flu hosp  18          0       
#>  4 2020-01-11 wk inc flu hosp  27          0       
#>  5 2020-01-11 wk inc flu hosp  30          0       
#>  6 2020-01-11 wk inc flu hosp  37          0       
#>  7 2020-01-11 wk inc flu hosp  48          0       
#>  8 2020-01-11 wk inc flu hosp  US          1       
#>  9 2020-01-11 wk flu hosp rate 01          0       
#> 10 2020-01-11 wk flu hosp rate 15          0       
#> 11 2020-01-11 wk flu hosp rate 18          0       
#> 12 2020-01-11 wk flu hosp rate 27          0       
#> 13 2020-01-11 wk flu hosp rate 30          0       
#> 14 2020-01-11 wk flu hosp rate 37          0       
#> 15 2020-01-11 wk flu hosp rate 48          0       
#> 16 2020-01-11 wk flu hosp rate US          0.000301
# Filter for a specific location before collecting
ts_con |>
  dplyr::filter(location == "US") |>
  dplyr::collect()
#> # A tibble: 402 × 4
#>    date       target          location observation
#>    <date>     <chr>           <chr>          <dbl>
#>  1 2020-01-11 wk inc flu hosp US                 1
#>  2 2020-01-18 wk inc flu hosp US                 0
#>  3 2020-01-25 wk inc flu hosp US                 0
#>  4 2020-02-01 wk inc flu hosp US                 0
#>  5 2020-02-08 wk inc flu hosp US                 0
#>  6 2020-02-15 wk inc flu hosp US                 0
#>  7 2020-02-22 wk inc flu hosp US                 0
#>  8 2020-02-29 wk inc flu hosp US                 0
#>  9 2020-03-07 wk inc flu hosp US                 0
#> 10 2020-03-14 wk inc flu hosp US                 0
#> # ℹ 392 more rows
# Access Target time-series data from a cloud hub
s3_hub_path <- s3_bucket("example-complex-forecast-hub")
s3_con <- connect_target_timeseries(s3_hub_path)
s3_con
#> target_timeseries with 1 csv file
#> 4 columns
#> date: date32[day]
#> target: string
#> location: string
#> observation: double
s3_con |> dplyr::collect()
#> # A tibble: 20,510 × 4
#>    date       target          location observation
#>    <date>     <chr>           <chr>          <dbl>
#>  1 2020-01-11 wk inc flu hosp 01                 0
#>  2 2020-01-11 wk inc flu hosp 15                 0
#>  3 2020-01-11 wk inc flu hosp 18                 0
#>  4 2020-01-11 wk inc flu hosp 27                 0
#>  5 2020-01-11 wk inc flu hosp 30                 0
#>  6 2020-01-11 wk inc flu hosp 37                 0
#>  7 2020-01-11 wk inc flu hosp 48                 0
#>  8 2020-01-11 wk inc flu hosp US                 1
#>  9 2020-01-18 wk inc flu hosp 01                 0
#> 10 2020-01-18 wk inc flu hosp 15                 0
#> # ℹ 20,500 more rows